Consistency and Replication
e Part 1: Replication

e Part 2: Consistency models
e Data-centric consistency models

e Client-centric consistency models

e Part 3: Eventual Consistency and Epidemic Protocols

University of
Massachusetts | Compsci 677: Distributed and OS Lec. 16 1
Amberst

Part 1: Replication Basics

e Data replication versus compute replication

» Data replication: common technique in distributed systems
¢ Reliability
— If one replica is unavailable or crashes, use another
— Protect against corrupted data
* Performance
— Scale with size of the distributed system (replicated web servers)

— Scale in geographically distributed systems (web proxies)

University of
Massachusetts | Compsci 677: Distributed and OS Lec.16 2
Amberst

Replication Issues

e When to replicate?
e How many replicas to create?

* Where should the replicas located?

e Will return to these issues later (WWW discussion)
* Today: how to maintain consistency?
» Key issue: need to maintain consistency of replicated data

— If one copy is modified, others become inconsistent

University of
Massachusetts Compsci 677: Distributed and OS Lec.16 3
Amberst

CAP Theorem

e Conjecture by Eric Brewer at PODC 2000 conference
e Itis impossible for a web service to provide all three guarantees:
e Consistency (nodes see the same data at the same time)
e Availability (node failures do not cause failure of rest of the system)
¢ Partition-tolerance (system can tolerate message loss)

¢ Adistributed system can satisfy any two, but not all three, at the same time
¢ Conjecture was established as a theorem in 2002 (by Lynch and Gilbert)

University of
Massachusetts Compsci 677: Distributed and OS Lec.16 4
Amberst

CAP Theorem Examples

» Consistency+Availability
e Single database, cluster database, LDAP, xFS
e 2 phase commit
e Consistency + partition tolerance
« distributed database, distributed locking
* pessimistic locking
* Availability + Partition tolerance
e Coda, Web caching, DNS
¢ leases, conflict resolution,

University of
Massachusetts Compsci 677: Distributed and OS
Amberst

NoSQL Systems and CAP

University of
Massachusetts Compsci 677: Distributed and OS
Amberst

Figure Courtesy of

Lec.16 5

Lec.16 6

Object Replication

Replicated
object
f —
L) Object- Q
specific
replication
Middleware protocol Middleware
Network OS Network OS
Network
(@

*Approach 1: application is responsible for replication
— Application needs to handle consistency issues
*Approach 2: system (middleware) handles replication

— Consistency issues are handled by the middleware

Replicated
object
D‘ ~D
Middleware Middleware
Middleware
Network s | replication | Network OS
protocol
Network
(b)

— Simplifies application development but makes object-specific solutions harder

University of
Massachusetts | Compsci 677: Distributed and OS
Ambherst

Replication and Scaling

» Replication and caching used for system scalability
¢ Multiple copies:
— Improves performance by reducing access latency
— But higher network overheads of maintaining consistency
— Example: object is replicated N times
* Read frequency R, write frequency W
e If R<<W, high consistency overhead and wasted messages
¢ Consistency maintenance is itself an issue
— What semantics to provide?
— Tight consistency requires globally synchronized clocks!
¢ Solution: loosen consistency requirements
— Variety of consistency semantics possible
University of

Massachusetts | Compsci 677: Distributed and OS
Ambherst

Lec.16 7

Lec.16 8

Part 2: Data-Centric Consistency Models

Process Process Process

Local copy

Distributed data store

¢ Consistency model (aka consistency semantics)
— Contract between processes and the data store
« If processes obey certain rules, data store will work correctly
— All models attempt to return the results of the last write for a read operation

« Differ in how “last” write is determined/defined

University of
Massachusetts | Compsci 677: Distributed and OS
Amberst

Strict Consistency

* Any read always returns the result of the most recent write
— Implicitly assumes the presence of a global clock
— A write is immediately visible to all processes

» Difficult to achieve in real systems (network delays can be variable)

University of
Massachusetts | Compsci 677: Distributed and OS
Amberst

Lec.16 9

Lec. 16 10

Sequential Consistency

*Sequential consistency: weaker than strict consistency

— Assumes all operations are executed in some sequential order and each process issues

operations in program order

* Any valid interleaving is allowed

e All agree on the same interleaving

e Each process preserves its program order

* Nothing is said about “most recent write”

P1: Wix)a

P2: W(x)b

P3: RX)b R(x)a
P4; Rxb R(x)a

University of
Massachusetts | Compsci 677: Distributed and OS
Amberst

Linearizability

*Assumes sequential consistency and

P1. Wix)a

P2 W(x)o

P3 R{x)b R(x)a
P4 R(x)a R(x)b

— If TS(x) < TS(y) then OP(x) should precede OP(y) in the sequence

— Stronger than sequential consistency

— Difference between linearizability and serializability?

e Granularity: reads/writes versus transactions

Example:
Process P1 Process P2 | Process P3
x=1; y=1; z=1;
print ('y, 2); print (x, z); print (x, y);
University of

Massachusetts | Compsci 677: Distributed and OS
Amberst

Lec. 16 11

Lec. 16 12

Linearizability Example

e Four valid execution sequences for the processes of the previous slide. The

vertical axis is time.

University of
Massachusetts
Ambherst

Causal consistency

e Causally related writes must be seen by all processes in

x=1; x=1;
print ((y, 2); y=1;
y=1; print (x,2);
print (x, z); print(y, z);
z=1; z=1;
print (x, y); print (x, y);
Prints: 001011 Prints: 101011
Signature: Signature:
001011 101011
(@) (b)

Compsci 677: Distributed and OS

the same order.

—Concurrent writes may be seen in different orders on

different machines

University of
Massachusetts
Ambherst

y=1; y=1;

z=1,; x=1;

print (x, y); z=1;
print (x, 2); print (x, z);
x=1; print (y, 2);
print (y, z); print (x, y);

Prints: 010111 Prints: 111111

Signature: Signature:
110101 111111

(© (d)

P1: W(x)a P1: W(x)a
P2: Rx)a Wb P2: Wx)b
P3: Rx)b R(x)a P3: R(x)b Rx)a
P4: R(x)a Rx)b P4: R(x)a Rx)b
(€] (b)
Not permitted Permitted

Compsci 677: Distributed and OS

Lec. 16 13

Lec. 16 14

Other models

* FIFO consistency: writes from a process are seen by others in the same order. Writes from
different processes may be seen in different order (even if causally related)

— Relaxes causal consistency
— Simple implementation: tag each write by (Proc ID, seq #)
e Even FIFO consistency may be too strong!
— Requires all writes from a process be seen in order
¢ Assume use of critical sections for updates
— Send final result of critical section everywhere
— Do not worry about propagating intermediate results
* Assume presence of synchronization primitives to define semantics

University of
Massachusetts Compsci 677: Distributed and OS Lec.16 15
Amberst

Other Models

Use granularity of critical sections, instead of individual read/write

* Weak consistency

— Accesses to synchronization variables associated with a data store are sequentially
consistent

— No operation on a synchronization variable is allowed to be performed until all previous writes
have been completed everywhere

— No read or write operation on data items are allowed to be performed until all previous
operations to synchronization variables have been performed.

* Entry and release consistency
— Assume shared data are made consistent at entry or exit points of critical sections

University of
Massachusetts Compsci 677: Distributed and OS Lec.16 16
Amberst

Summary of Data-centric Consistency Models

Consistency Description
Strict Absolute time ordering of all shared accesses matters.
. L All processes must see all shared accesses in the same order. Accesses are
Linearizability . . .
furthermore ordered according to a (nonunique) global timestamp
. All processes see all shared accesses in the same order. Accesses are not
Sequential P
ordered in time
Causal All processes see causally-related shared accesses in the same order.
All processes see writes from each other in the order they were used. Writes
FIFO ; i
from different processes may not always be seen in that order
@
Consistency Description
Weak Shared data can be counted on to be consistent only after a synchronization
Release Shared data are made consistent when a critical region is exited
Ent Shared data pertaining to a critical region are made consistent when a critical
i region is entered.
(b)
University of
Massachusetts | Compsci 677: Distributed and OS Lec. 16 17
Amberst

Client-driven Consistency

J Atssume read operations by a single process P at two different local copies of the same data
store

— Four different consistency semantics
e Monotonic reads

— Once read, subsequent reads on that data items return same or more recent values

Monotonic writes

— A write must be propagated to all replicas before a successive write by the same process

— Resembles FIFO consistency (writes from same process are processed in same order)

Read your writes: read(x) always returns write(x) by that process

Writes follow reads: write(x) following read(x) will take place on same or more recent version of x

University of
Massachusetts | Compsci 677: Distributed and OS

Lec. 16 18
Amberst

Part 3: Eventual Consistency

* Many systems: one or few processes perform updates
— How frequently should these updates be made available to other read-only processes?
e Examples:
— DNS: single naming authority per domain
— Only naming authority allowed updates (no write-write conflicts)
— How should read-write conflicts (consistency) be addressed?
— NIS: user information database in Unix systems
¢ Only sys-admins update database, users only read data
¢ Only user updates are changes to password

— Cloud storage: dropbox, OneDrive, iCloud all use eventual consistency

University of
Massachusetts | Compsci 677: Distributed and OS Lec.16 19

Amberst

Eventual Consistency

e Assume a replicated database with few updaters and many readers

* Eventual consistency: in absence of updates, all replicas converge towards
identical copies

— Only requirement: an update should eventually propagate to all replicas
— Cheap to implement: no or infrequent write-write conflicts
— Things work fine so long as user accesses same replica

— What if they don’t:

Distrbuted and replcated database

Read and wte operatons

Portable computer

University of
Massachusetts | Compsci 677: Distributed and OS Lec.16 20

Amberst

Epidemic Protocols

* Used in Bayou system from Xerox PARC
e Bayou: weakly connected replicas
— Useful in mobile computing (mobile laptops)
— Useful in wide area distributed databases (weak connectivity)
* Based on theory of epidemics (spreading infectious diseases)
— Upon an update, try to “infect” other replicas as quickly as possible
— Pair-wise exchange of updates (like pair-wise spreading of a disease)
— Terminology:
* Infective store: store with an update it is willing to spread
* Susceptible store: store that is not yet updated

* Many algorithms possible to spread updates

I[\J/[I;is‘;ircs}iltgs;ftts Compsci 677: Distributed and OS Lec. 16 21
Amherst
Spreading an Epidemic
preading an Epid
¢ Anti-entropy
— Server P picks a server Q at random and exchanges updates
— Three possibilities: only push, only pull, both push and pull
— Claim: A pure push-based approach does not help spread updates quickly (Why?)
¢ Pull or initial push with pull work better
¢ Rumor mongering (aka gossiping)
— Upon receiving an update, P tries to push to 0
— If O already received the update, stop spreading with prob 1/k
— Analogous to “hot” gossip items => stop spreading if “cold”
— Does not guarantee that all replicas receive updates
¢ Chances of staying susceptible: s= e-(k+1)(1-s)
II\J/[I;is‘;ircS}il?sZﬁs Compsci 677: Distributed and OS Lec. 16 22

Ambherst

Removing Data

¢ Deletion of data items is hard in epidemic protocols
e Example: server deletes data item x
— No state information is preserved
» Can't distinguish between a deleted copy and no copy!
 Solution: death certificates
— Treat deletes as updates and spread a death certificate
* Mark copy as deleted but don’t delete
* Need an eventual clean up

— Clean up dormant death certificates

University of
Massachusetts | Compsci 677: Distributed and OS
Amberst

Lec. 16 23

